0/121

Pyromaniac II

The Sequel

‘M Gerph, November 2021

0. Introduction

1/121

Introduction
How I'll do this talk

e Some talk about how RISC OS does things.
e There are 9 sections, with questions spread within them.
e Slides will be available at the end, together with some other resources.

e At the conclusion I'll answer any questions people have for as long as people want.

2/121

Introduction
What I'll talk about

o N o U1 AW N

3 /121

. Some background.

. VNC and Sprites (and questions).

. Font Manager and Screen Modes.

. Documentation (and questions).
. Testing.

. Miscellaneous bits.

. System demo (and questions).

. Conclusions.

1. Background

Background
Who am I?

e A RISC OS architect and engineer.
e My day job is working with test and build systems.

e In previous times did a lot of things with RISC OS, which you can read about on my site if you're
interested - gerph.org/riscos

e | know RISC OS inside and out, and | work on it because it's fun.

5/121

Background

Recap

What did | show last year?

e RISC OS Build system, and how it works - build.riscos.online

e A cloud system for building and testing RISC OS software.

e Available to all, for free.
e RISC OS Pyromaniac, the operating system that powers it.

e A reimplementation of RISC OS from scratch in Python.
e Intended for debugging and testing.

e This RISC OS presentation system which runs on it!

* An online service which demonstrates RISC OS Pyromaniac - shell.riscos.online

* A lot of open source software and resources - pyromaniac.riscos.online

6/121

Background
What I said 1 was going to look at

Here's what | said | wanted to have a look at:

7 /121

* More APIs.

e Better handling of corner cases.
e Sprites (sigh).

e Back Trace Structures.

e Finish the pending branches - Windows, Zipper, EasySockets, Git, DCI4, ...

e Using it for actual testing - that was what it was for!

e So many other opportunities.

2. VNC and sprites

VNC server

A more accessible system

It would be cool...

e To have the shell server be more accessible.
e To allow you to have a graphical view on the system.

e Maybe pipe the graphics operations directly to a browser canvas.

But that's a lot of work.
How about using VNC instead? - let's write a library.

9/121

VNC server
Writing a new library (1)

The library ...

e Needed to be reusable
e Needed to work with the common VNC clients.

e Needed to be simple enough to be used without much boilerplate.

e Needed to handle multiple concurrent connections.

e Needed to allow some connections to be read only.

e Needed to be able to take input from the user.
e Needed to be able to change the pointer.
* Needed to be able to handle clipboard.

10/ 121

VNC server
Writing a new library (2)

What do we support?

e Password controls whether you can control the session, or only view.
e Display format can have most RGB formats.
e Only ever supplies data as raw RGB - never compressed...
e .. but it only delivers changing rows.
e Display size changes can be communicated to the client.
* Mouse and keyboard input is supported.
e Multiple simultaneous connections supported.
But ...
e |t doesn't support changing the pointer.
e Or the clipboard.

11 /121

VNC server

What does it look like?

Create the animator

screen = Screen()

animate thread = threading.Thread(target=screen.animate)
animate thread.daemon = True

animate thread.start()

Create the server

server = cailirovnc.CairoVNCServer(port=5902, surface=screen.surface)
server.serve forever()

12 /121

VNC server

Integrating with Pyromaniac

How easy was it to integrate with Pyromaniac?

e Not especially hard.

e Getting the mouse input right was surprisingly frustrating.
e Needed multi-threaded locking adding to the library.

e The entire implementation is 317 lines.

* 130 of them are the key mapping table.

13 /121

Sprites

How do you draw sprites?

Let's look at what happens when you put a sprite on the screen in RISC OS.

e Work out what the sprite is (0S_spriteop 18 or use the sprite name).
e Ask for a colour translation table (colourTrans GenerateTable).

e Request a plot of the sprite (0S_spriteop in one of its many forms).

14 /121

S

prites

What do you need to draw sprites?

15 /121

e Graphics primitives, like a graphics cursor and colour selection.

e Modes that are shallow (paletted), and deep (linear colour components).
e Mode information, like the depth and dimensions.

e Palette information for mapping colours in low modes.

e Colour translations, for finding the best colours.

e Sprite area management, like loading and finding the right sprites.

e Sprite area information, to know what sprites are.

e Sprite rendering, to get the sprite on to the screen.

Sprites

Drawing sprites in Pyromaniac (1)

Graphics primitives like being able to select colours to draw with, and then drawing lines and text, may not
seem like they're necessary for sprite plotting, but they're needed for a few things...

e Colour selection is used for the rarely needed 'plot mask' operations.
e Graphics cursor positioning is needed for some 'plot at cursor' operations.

e Graphics windowing needs to bound any rendered windows.

16 /121

Sprites
Drawing sprites in Pyromaniac (2a)

Two types of modes:

e Shallow modes are paletted and have 256 colours or fewer.

e Deep modes have linear colour components (15bpp and 24bpp modes).

low are they specified:

e The current mode, usually specified as -1 to interfaces.

e Numbered modes.

e Mode selectors, which give the basic screen parameters for a mode.

e Sprite mode numbers, which just contain the colour type and the density.

e Sprites, which can be treated like modes in some cases.

17 /121

Sprites

Drawing sprites in Pyromaniac (2b)

Getting a Mode from a mode specifier:

def getmodedef(self, mode or address):

Convert from a mode specifier (number, selector,

modesel = ModeSelector(self.ro, mode or address)
return modesel.modedef

sprite mode word, etc) to Mode.

18 /121

Sprites

Dr

awing sprites in Pyromaniac (3)

if mode in (-1, OXFFFFFFFF):
self.modedef = self.ro.kernel.vdu.getmodedef(-1)

elif mode >= 256 and (mode & 1) == 0:
sprite address = self.ro.kernel.api.os spriteop get address(area=mode,
sprite name=sprite name)

self.modedef = self.ro.kernel.vdu.getmodedef (sprite address)

else:
Numbered mode, or a mode descriptor

self.modedef = self.ro.kernel.vdu.getmodedef (mode)

self.colours = self.modedef.ncolour + 1

if self.colours == 64:
self.colours = 256

19 /121

Sprites

Drawing sprites in Pyromaniac (4a)

e To operate on a sprite we need to find it in a sprite area.
e Pyromaniac has an object for a SpriteArea, which can locate sprites by name.
e Within the area, we create objects for sprite itself - a sprite object.

e This sprite object knows how to extract information from it:

e Width and height

e Mode - resolution, depth and colour type.
e Palette

* Image data

e Mask data

20/ 121

Sprites

Drawing sprites in Pyromaniac (4b)

@handlers.osspriteop.register(spriteop.SpriteReason ReadSpriteSize)

def OS SpriteOp 28(ro, reason, regs, area, sprite):

regs

regs[4]
[D]
regs|[6]

regs

3]

= sprite.width

= sprite.height

=1 if sprite.mask offset else 0
= sprite.mode

1f ro.kernel.sprites.debug spriteop:

print ("Read sprite size {!r}, name {!r} => {}x{}, mask {}, mode {} (&{:08x})"

.format(sprite, sprite.name,
sprite.width,
sprite.height,
bool (sprite.mask offset),
sprite.mode,
sprite.mode))

21 /121

Sprites

Drawing sprites in Pyromaniac (5)

* ColourTrans_GenerateTable turns a palette into a translation table for rendering sprites.

e Takes source and destinations, which can be any of the mode specifiers.

e Can change the colours as the table is generated with a transfer function.

A simple call in BASIC for translation from a sprite to the current mode might be:

SYS "ColourTrans GenerateTable", 256, sprite%, -1, -1, 0, %01 TO ,,,,pixtrans size%
DIM pixtrans$% pixtrans size%
SYS "ColourTrans GenerateTable", 256, sprite%, -1, -1, pixtrans%, %01

22 /121

Sprites

Drawing sprites in Pyromaniac (6a)

Plotting sprites: Source

Sprite

Source palette 3 3
Colour 0[{&00000000 31313
Colour 1|&0000FF00 31313
Colour 2|&00FFFF00 il B
Colour 3|&FFFFFF00 3 3
3131313

23 /121

Sprites

Drawing sprites in Pyromaniac (6b)

Plotting sprites: ColourTrans_GenerateTable
Destination palette

24 /121

Source palette

Colour 0

&00000000

Colour 1

&0000FFO0O

Colour 2

&00FFFFO0O

Colour 3

&FFFFFFO00

Colour 0

&FFFFFFOO0

Colour 1

&DDDDDDOO0

Colour 2

&BBBBBBO0O

Colour 3

&99999900

Colour 4

&77777700

Colour 5

&55555500

Colour 6

&33333300

Colour 7

&00000000

Colour 8

&99440000

Colour 9

&EEEEQ000

Colour 10

&00CC0000

Colour 11

&0000DDO0OO0

Colour 12

&BBEEEEOO

.Cnlnur 13

&00885500

Colour 14

&00BBFFO00

.Cnlnur 15

&FFBBFF00

Sprites

Drawing sprites in Pyromaniac (6¢)

Plotting sprites: ColourTrans_GenerateTable
Destination palette

25 /121

Source palette

Colour 0

£00000000 |

Colour 1

&0000FFOO |

Colour 2

&00FFFFO0O|

Colour 3

&FFFFFFUUl

Colour 0

&FFFFFFOO0

Colour 1

&DDDDDDOO0

Colour 2

&BBBBBBO0O

Colour 3

&99999900

Colour 4

&77777700

Colour 5

&55555500

Colour 6

&33333300

Colour 7

&00000000

Colour 8

&99440000

Colour 9

&EEEEQ000

Colour 10

&00CC0000

Colour 11

&0000DDO0O0

Colour 12

&BBEEEEOO

Colour 13

&00885500

Colour 14

&00BBFFO00

Colour 15

&FFBBFF00

Sprites

Drawing sprites in Pyromaniac (6d)

26 /121

Plotting sprites: ColourTrans_GenerateTable

Source palette

Colour 0

£00000000 |

Colour 1

&0000FFOO |

Colour 2

&00FFFFO0O|

Colour 3

&FFFFFFUUl

Destination palette

Colour 0

&FFFFFFOO0

Colour 1

&DDDDDDOO0

Colour 2

&BBBBBBO0O

Colour 3

&99999900

Colour 4

&77777700

Colour 5

&55555500

Table

Colour 6

&33333300

Colour 7

&00000000

Byte O

Colour 8

&99440000

Byte 1

11

Colour 9

&EEEEQ000

Byte 2

14

Colour 10

&00CC0000

Byte 3

Colour 11

&0000DDO0OO0

Colour 12

&BBEEEEOO

Colour 13

&00885500

Colour 14

&00BBFFO00

Colour 15

&FFBBFF00

Sprites

Drawing sprites in Pyromaniac (6e)

Plotting sprites: OS_SpriteOp

Sprite

3 3 Table
31313 Byte O] 7
3[3]3 Byte 111
] B Byte 2 |14

3 3 Byte 3| 0

331313

27 /121

Sprites

Drawing sprites in Pyromaniac (6f)

28 /121

3

Sprite

Plotting sprites: OS_SpriteOp

313

Table

Byte O

/

313

3

Byte 1

11

Byte 2

14

313

Byte 3

0

Byte data
10T 0T 11|=215
[T 11 11 01|=253
1T 11T 01 |= 253
[T 01T 1101|=221
10101 11]=215
[T 11 11 11|= 255

Sprites

Drawing sprites in Pyromaniac (6g)

Plotting sprites: OS_SpriteOp

29 /121

Byte data
0T 01 11T|=215 Table
111 11 01]=253 Byte 0| 7
1T 11 11 01|=253 Byte 111
01T 1T 071 |=221 Byte 2|14
110101 11]=215 Byte 3| 0
NN =255

Colour lookup

215(= (3, 1, 1, 3)
2211=(1, 3, 1, 3)
253|= (1, 3, 3, 3)
255(= (3, 3, 3, 3)

Sprites

Drawing sprites in Pyromaniac (6h)

Plotting sprites: OS_SpriteOp

30 /121

Byte data

10101 1T1|=215 Table

T 1T 11 01)=253 Byte O| 7

T 1111 01|=253 Byte 1|11

o1 1T 0T1=221 Byte 2|14

110101 11]=215 Byte 3| 0

111111 11|=255

\J
Colour lookup Translated lookup

215|1= (3, 1, 1, 3) 215|= (0, 11, 11, 0)
2211=(1, 3, 1, 3) 221|1=(11, 0, 11, 0)
253|1= (1, 3, 3, 3) 253|=1(11, 0, 0, 0)
255|=(3, 3, 3, 3) 2551 =(0, 0, 0, 0)

Sprites

Drawing sprites in Pyromaniac (6i)

Plotting sprites: OS_SpriteOp

Destination palette

Colour 0 |&FFFFFF00

Colour 1 |&DDDDDDOO

Colour 2 |k BEEBBEOD

Colour 3 |&99999900

Byte data Colour 4 |&77777700

10T 01 11)=215 Table Colour 5 [&55555500

1111 11 01|=253 Byte 0] 7 Colour 6 |&33333300

1111 11 01|=253 Byte 1|11 Colour 7 |&00000000

1T 0T 1T1T01|=221 Byte 2|14 Colour 8 [&99440000

10101 1T1|=215 Byte 3| 0 Colour 9 |&EEEE0000

1T 11 11 11|=255 Colour 10{&00CC0000

Colour 11|&0000DD00

Colour 12|&BBEEEEQO

Colour 13|&00885500

Colour 14|&00BBFFO00

Colour 15|&FFBBFF00

\J Y
Colour lookup Translated lookup Paletted lookup

215|=(3, 1, 1, 3) 215|= (0, 11, 11, 0) 215|= (&FFFFFFO00, &0000DDOO, &0000DDOO, &FFFFFFOOQ)
21=(1, 3, 1, 3)| = |221(=(11, 0, 11, O)| =i [221|= (&0000DD0O0, &FFFFFFO00, &0000DD00, &FFFFFFO00)
2531=(1, 3, 3, 3) 253|=(11, 0, 0, 0) 253|= (&0000DD00, &FFFFFF00, &FFFFFF00, &FFFFFF00)
255|1=(3, 3, 3, 3) 255 =(0, 0, 0, 0) 255|= (&FFFFFFO00, &FFFFFFO00, &FFFFFFO00, &FFFFFFOO0)

31 /121

Sprites

Drawing sprites in Pyromaniac (6j)

32 /121

Byte data

10T 0T 11

=215

T 11 11 01

=253

[T 11T 171 0T

=253

10T 171 01

=221

[T 0101 11

=215

(T 11 11 11

= 255

Plotting sprites: OS_SpriteOp

Paletted lookup

215|= (&FFFFFF00,

&0000DDOO,

&0000DDOO,

&FFFFFF00)

221|= (&0000DDO0OO,

&FFFFFFO00,

&0000DDO0,

&FFFFFF00)

253|= (&0000DDOO,

&FFFFFFO00,

&FFFFFFO0O0,

&FFFFFFO00)

255|= (&FFFFFF00,

&FFFFFFO0O0,

&FFFFFFO0O,

&FFFFFFO00)

N

Output data

(&FFFFFF00,

£0000DDOO,

&£0000DDOO,

&FFFFFFO0O0)

(&0000DDO0,

&FFFFFFO0O0,

&FFFFFFO0O0,

&FFFFFF00)

(&0000DDO0OO,

&FFFFFFO00,

sFFFFFF00,

&FFFFFF00)

(&0000DDOO,

&FFFFFFO0O,

&0000DDOO,

&FFFFFFO0O0)

(&FFFFFFO0O0,

&0000DDO0OO0,

&0000DDO0,

&FFFFFF00)

(&FFFFFF00,

&FFFFFFO00,

&FFFFFF00,

&FFFFFF00)

Sprites

Coordinate space (1)

e Coordinate spaces describe where you start drawing from and which direction is positive in each axis.
e RISC OS uses cartesian coordinates, just like the BBC.
e These are mapped to pixels on the screen.

e Pyromaniac has to then map them to the coordinates used by the Cairo graphics system.

33 /121

Sprites 800,600
Coordinate space (2) +ve T

e Origin is specified by the user. P +ve

0,0
e X-coordinates increase to the right of the screen.

e Y-coordinates increase up the screen. — 800,600

e User coordinate space has coordinates which are scaled by the eigenfactors, representing the shape
and size of pixels.

e Bottom left coordinates are (-800, -600).
 Top right coordinates are (800, 600).

34 /121

S

prites 1600,1200

Coordinate space (3)
+ve
* Origin is specified at the bottom left. A
e X-coordinates increase to the right of the screen.
* Y-coordinates increase up the screen. 0.0 > +ve

35/121

e User coordinate space has coordinates which are scaled by the eigenfactors, representing the shape
and size of pixels.

* Bottom left coordinates are (0, 0).

e Top right coordinates are (1600, 1200).

S

prites

Coordinate space (4)

36 /121

e Origin is specified at the bottom left.

e X-coordinates increase to the right of the screen.

e Y-coordinates increase up the screen.
e Coordinates map directly to pixels.
e Bottom left coordinates are (0, 0).

* Top right coordinates are (800, 600).

800,600

+ve

P +ve

0,0

S

prites

Coordinate space (5)

37 /121

* Origin is specified at the top left.

e X-coordinates increase to the right of the screen.

¢ Y-coordinates increase down the screen.
e Coordinates map directly to pixels.

e Bottom left coordinates are (0, 600).

 Top right coordinates are (800, 0).

0,0

P +ve

+ve

800,600

Sprites

Transformations (1)

To resize the sprites with 0s_Spriteop...

e Some calls always render 1:1 on the screen.
e Some calls take a transformation matrix.

e Some calls take a scale block.

Pyromaniac has scale and Matrix objects to handle these operations.

38 /121

Sprites

Transformations (2)

| .

39 /121

Ori

Transformation
a b 0
" . (: d 0
ginal € f 1

Generic matrix

Sprites

Transformations (3)

40 /121

Original

Transformation
T T
| yx Yy

Ltranslate Ytranslate
Matrix meaning

0
0
|

Sprites

Transformations (4)

41 /121

Original

Transformation

2 0 0
>0 2 0 .
0 0 1

Matrix (2x)

P

Transformed

Sprites

Transformations (5)

42 /121

Transformation
4 0 0
O 1 0O
0 0O

Transformed

Sprites
Tiling (1)

e Tiling is used for the desktop background tile.

e Traditionally this was done by repeatedly calling 0os_spriteop, like this:

43 /121

Sprites
Tiling (2)

Tiling a sprite with the interface is simple - plot the sprite at a single location and it fills the graphics window:

44 /121

Sprites
Tiling (3)

if surface:
spattern = self.cairo.SurfacePattern(surface)
spattern.set filter(self.cairo.FILTER NEARREST)
spattern.set matrix(invcmatrix)
if tile:

spattern.set extend(self.cairo.Extend.REPEAT)

context.set source(spattern)
graphiecs. set action(plot action)

else:
graphics. set colour(plot colour, plot _action)

if tile:
context.rectangle(graphics.windowx0, graphics.scrheight - graphics.windowyl - 1,
graphics.windowxl - graphics.windowx0 + 1,
graphics.windowyl - graphics.windowy0 + 1)

context.set matrix(cmatrix)
if not tile:
context.rectangle(0, 0, sprite.width, sprite.height)

if translucency:
alpha = (255 - translucency) / 255.0
context.clip()
context.paint with alpha(alpha)
else:
context.fill()

45 /121

Sprites
Tiling (4)

Tiling a cog sprite:

46 /121

VNC game demo

To play your own game, instructions are at: https://railpro.riscos.online/
Connect to VNC at: vnc.railpro.riscos.online display 8 (port 5908)
Password: password

47 /121

Fonts

Where were things last year?

e FontManager kinda worked.

49 /121

But it was on a branch - | wasn't confident with it yet.

Didn't handle control codes properly, or consistently.

Required a lot of work for me to be happy with it.

Fonts
Simple text (1)

e Simple rendering was simple - stop on a 0 byte.

e Fine for the presentation, because it doesn't do anything fancy.

To render fonts, RISC OS Pyromaniac has two major parts:

e The graphics system's font interface.

e For example selecting fonts, sizing simple text, drawing text with transformations.

e The RISC OS-facing SWI interface.

e For example Font FindFont, Font ScanString, Or Font Paint.

Largely, Pyromaniac just turned the SWI calls into graphics system calls in this simple text system... but the
WindowManager needs more.

50/121

Fonts
Simple text (2)

51 /121

O0OMy Error Message

Fonts

Control codes

Font control codes the SWIs need to support:

52 /121

0, 10, 13 - terminates the string

9, 11 - moves the cursor horizontally and vertically by a specified amount

17 - changes the foreground colour

18 - changes the foreground and background

19 - changes the foreground and background
21 - hides text until the next control character
25 - sets the underline parameters

26 - selects the font to use

ike Font_SetFontColours, using GCOLs

ike ColourTrans_SetFontColours, using RGB values.

* 27, 28 - changes the transformation matrix (with and without translation)

Fonts
Spacing parameters

Spacing in menus would usually be put in the menu text like this:

Save “F3

And then the WindowManager handles the alignment for you:

e |t gets the size of the string without any extra spaces.

e Subtracts from the menu width.

e And then uses the remaining space as the inter-word spacing parameter.

Pyromaniac only supported this in a simple way by splitting on spaces. And it didn't support the

inter-character spacing.

53 /121

Fonts

Font encodings (1)

e WwIMPSymbol provides the shift and other arrows which were in the VDU 4 only Wimp.
e The WindowManager switches the font string to the wiMpsymbol font when it sees these characters.

 When you use the character 139 (&8b) - the scroll up arrow - it gets converted to:
* 26, WIMPSymbol font handle, 139, 26, desktop font handle

e The FontManager uses font-specific encodings to handle this.
e So Pyromaniac has a version of this internally.

* The python-codecs-riscos module was updated to add the encodings for the symbol fonts Sidney,
Selwyn and WIMPSymbol.

54 /121

Fonts

Font encodings (2)

55 /121

S22l O B) = Wil HOETco0/ OXRX kbd+ot ¢ F %
TG oo oo O O AR AR K KK KRB R
KTVXE AR QOMIAKEEAVRS) | | B¢ ° %9 [
IRIRIRIRIRIRIRIRIRIRINIRIRIRININININGS S S EL O AUN DI It i Bl
(€220 EndbeVLaDRODOODRODN0OO0O0IOODD

OIOIBIBICIGCIBIGION X2 X314 X5 X6 X7 X8 X0 10 E S N e e
- - - b W)) S0 D D[] OOD B 35" R g = b =]

Fonts

Improved control codes parsing (1)

How the WindowManager handles Replace shift-F5 as a menu item:

® [26, 1] - change font to desktop font

® "Replace " - regular string

® (26, 2] - change font to WIMPSymbol

e "\x8b" - regular string for the shift character
® (26, 1] - change font to desktop font

e "F5" - regular string

56 /121

Fonts

Improved control codes parsing (2)

57 /121

Plain string

Rubout box [A{]

Extra word spacing
Extra char spacing

Justify text
aatrix

Controls:

Fonts
Improved control codes parsing (3)

F N A AR R L R LR LT AT e s e T L Y T T T e Tl AT e T e T T e T WG s T]l s AT T B T

RISC OS Pyromaniac
File Disc Settings Help - PI - -
ain string

Plain string i
Rubout box [A(] Rubout box [Af]]
Extra word spacing

Extra word spacing ‘
Extra char spacin Extra char spacing
P | Justify

Justify text Controls:
Controls:

58 /121

Fonts

Proper control code parsing (1)

e This is still a bit of a bodge.

e We only process things properly in Font_Paint.

* Font_ScanString and friends still use the control code stripping method.
e So | started again...

e ... But learnt from what I'd done before.

e The new parser was written using the principles of what I'd learnt about processing control code
segments.

e [t wasn't written inside Pyromaniac at all.

59 /121

Fonts

Proper control code parsing (2)

60 /121

e Matrix and Bounds - define structures to manage transformation matrices and bounding boxes.

e FontContext - holds all the state for sizing or rendering, and controls

processing.

® FontControlParser - performs reading the string and creating a list of operations.

* FontControlSequence - manages the list of operations described by t

® FontControl* - classes which perform the operations for each contro
FontControlRGB.

ne control sequence.

, €g FontControlString,

Fonts

Proper control code parsing (3a)

61 /121

FontContext

font_handle

0

fgpal

&00000010 .

bgpal

&FFFFFF10

X

640

Y

480

Font control sequence processing

FontControlSequence

FontControlFont

font_handle

FontControlString

string "Replace "

FontControlFont

font_handle 2
I
FontControlString
string e

FontControlFont

font_handle

1

FontControlString

string "ES"

Fonts

Proper control code parsing (3b)

62 /121

FontContext

font_handle

()

fepal &00000010
bgpal &FFFFFF10 F
X 640

¥ 480

Font control sequence processing

FontControlSequence

FontControlFont

font_handle 1
FontControlString
string "Replace "

FontControlMoveSpace

dx 32

dy 0

FontControlFont

font_handle 2
I
FontControlString
string 0 [

FontControlFont

font_handle 1
I
FontControlString
string "F5"

Fonts

Proper control code parsing (3¢)

63 /121

FontContext

font_handle

fepal &00000010
bgpal &FFFFFF10 F
X 640

y 480

Font control sequence processing

—_—

FontControlSequence

FontControlFont

font_handle 1
FontControlString
string "Replace "

FontControlMoveSpace

dx 32

dy 0

FontControlFont

font_handle 2
I
FontControlString
string [

FontControlFont

font_handle]

FontControlString

string "F5"

\

Fonts

Proper control code parsing (3d)

64 /121

Font control sequence processing

FontContext

font_handle

fepal &00000010
bgpal &FFFFFF10 F
X 688

y 480

\»

FontControlSequence

FontControlFont

font_handle]

FontControlString

string "Replace "

FontControlMoveSpace

dx 32

dy 0

FontControlFont

font_handle 2
I
FontControlString
string A [

FontControlFont

font_handle]

FontControlString

string "F5"

o

'Replace

Fonts

Proper control code parsing (3e)

65 /121

FontContext

font_handle

fgpal &00000010
bgpal &FFFFFF10 F
X 720

V 480

Font control sequence processing

FontControlSequence

FontControlFont

font_handle 1
FontControlString
string "Replace "

FontControlMoveSpace

dx 32

dy 0

FontControlFont

font_handle 2
|
FontControlString
string 0

FontControlFont

font_handle 1
I
FontControlString
string "F5"

Replace

Fonts

Proper control code parsing (3f)

66 /121

FontContext
font_handle 2
fepal &00000010
bgpal &FFFFFF10 F
X 720
V 480

Font control sequence processing

FontControlSequence

FontControlFont

font_handle 1
FontControlString
string "Replace "

FontControlMoveSpace

dx 32

dy 0

FontControlFont

font_handle 2
|
FontControlString
string SR

FontControlFont

font_handle 1
I
FontControlString
string "F5"

—

Replace

Fonts

Proper control code parsing (3g)

67 /121

FontContext
font_handle 2
fepal &00000010
bgpal &FFFFFF10 F
X 736
V 480

Font control sequence processing

FontControlSequence

FontControlFont

font_handle 1
FontControlString
string "Replace "

FontControlMoveSpace

dx 32

dy 0

FontControlFont

font_handle 2
|
FontControlString
string B[

FontControlFont

font_handle 1
I
FontControlString
string "F5"

Replace

L

Fonts

Proper control code parsing (3h)

68 /121

FontContext

font_handle

fgpal &00000010
bgpal &FFFFFF10 F
X 736

y 480

FontControlSequence

FontControlFont

font_handle]

FontControlString

string "Replace "

FontControlMoveSpace

dx 32

dy 0

FontControlFont

font_handle 2
I
FontControlString
string [

Font control sequence processing

/v Replace

FontControlFont

font_handle 1

FontControlString

string "F5"

L]

Fonts

Proper control code parsing (3i)

69 /121

FontContext

font_handle

fgpal &00000010
bgpal &FFFFFF10 F
X 768

y 480

Font control sequence processing

FontControlSequence

FontControlFont

font_handle 1

FontControlString

string "Replace "

FontControlMoveSpace

dx 32

dy 0

FontControlFont

font_handle 2
I
FontControlString
string A (i

FontControlFont

font_handle]

FontControlString

string "F5"

/» 'Replace 1F5 |

J

Fonts

Proper control code parsing (4)

What about Font ScanString and friends?

e They do the same thing, but call size instead of paint.
e At the end they can return other parameters such as the size and indexes.

* They update d future context for Font FutureFont Or Font FutureRGB.

70/121

Fonts

How's it compare?

71 /121

Plain string

Rubout box [A{]

Extra word spacing
Extra char spacing

Justify text
aatrix

Controls:

Fonts
What does it look like?

Font ScanString has code that looks like this:

self.context.copy(to=self.future context)
self.future context.select font(rohandle)

memstring = self.ro.memory[regs[l]]

fc = FontControlParserPyromaniac(self.ro)
fc.debug enable = self.debug fontparser
fc.parse(memstring, string length)

self.future context.transform = transform

split char = chr(split character) if split character is not None else None
(split offset, splits) = self.future context.size(fc.sequence, spacing=spacing,
limits=(xmilli, ymilli),
split char=split char)

72 /121

Fonts
Font caret

You can see here what the caret looks like at different heights:

8 1216 28 24 28 32 36 48 44 48 532 56 68 64

Pyromaniac also offers you the option of putting loops on the ends; here's what the PRM says:

The height of the symbol, which is a vertical bar with 'loops' on the end, can be varied to suit

the height of the text, or the line spacing.

When enabled, the loops look like this:

8 1216 28 24 28 32 36 48 44 48 52 56 68 64

73 /121

Screen

Modes

Introducing deep modes (1)

e Deep modes need to be handled like paletted modes.

e Palettes within the modes aren't indexed.

New Palette objects created with common interface:

® palette
® palette
® palette
® palette
® palette

® palette

74 /121

.copy(): Creates a copy of the palette.

.key (): Return a hash value for this palette.

.lookup(rgb): Returns an exact colour number from an RGB.

.find closest(rgb): Find the closest colour to the RGB value.
.find furthest(rgb): Find the furthest colour from the RGB value.

.generate_32k_table(): Return a 32K array of colour numbers.

Screen Modes
Introducing deep modes (2)

Buggy code:

def lookup(self, rgb):

Look up a colour from the palette by RGB value.
@param rgb: The RGB value (&BBGGRRxx) to lookup

freturn: index of the colour, or -1 if not found
r = (rgb>>8) & 255
if (r & 7) = (xr >> 5):
return -1 # Inexact colour
g = (rgb>>8) & 255
if (g & 7) != (g >> 5):
return -1 # Inexact colour
b = (rgb>>24) & 255
if (b & 7) != (b >> 5):
return -1 # Inexact colour

return (r>>3) | ((g>>3)<<5) | ((b>>3)<<10)

75 /121

Screen Modes
Mode strings (1)

Processing mode strings is needed so that BASIC for: MODE "x800 Y600 C1lé6M".
3 new SWI reasons were needed:

® 0S_ScreenMode 13: Decode mode string to a mode specifier.
® 0S_ScreenMode 14: Encode mode string from a mode specifier.

® 0S_ScreenMode 15: Select mode by mode string.

76 /121

Screen Modes
Mode strings (2)

Simple!

@handlers.osscreenmode.register(osscreenmode.ScreenModeReason SelectModeString)

def OS_ScreenMode 15(ro, reason, regs):

0S ScreenMode 15 (Select mode by mode string)

=> RO 15
Rl = pointer to mode string

This SWI is used to select a mode, given a mode string. Internally this is
implemented as a conversion to a mode specifier (0OS_ScreenMode 13) and
mode selection (0OS_ScreenMode 0), and is provided for convenience.

mode string = ro.memory[regs[l]].string ctrl

with ro.kernel.da sysheap.allocate(20 + 2 * 4 * 13 + 4) as modesel:
spec = ModeSelector(ro, string=mode string)
buf = BufferData(ro, modesel)
spec.write selector (buf)

ro.kernel.vdu.select mode(modesel.address)

return True

77 /121

Screen Modes
Mode strings (3)

e The mode strings had originally been processed by the WindowManager.

e This presented a problem for greyscale modes - the G specifier.

® Decode mode string followed by select mode would not know that it should be greyscale.
e New flag in the mode flags (mode variable 0) for greyscale modes (bit 9).

e The Mode objects spot this flag and report the default palette as greyscale.

78 /121

S

creen Modes

Mode enumeration

79 /121

® 0S_ScreenMode 2 performs enumeration through service EnumerateScreenModes.

e Usually this would be handled by ScreenModes, using a loaded MDF.

e RISC OS Pyromaniac instead enumerates through the numbered modes.
* You can still select other modes manually.

e ScreenModes can be run and be used to load an MDF, if you really wanted.

Screen Modes
Multiple displays

e RISC OS Select allows multiple displays to be connected and switched between.
e RISC OS Pyromaniac doesn't yet allow that.

e But it can describe the display that is connected.

e |t will be fun introducing multiple displays!

80 /121

4. Documentation

81 /121

Documentation
Pyromaniac's APIs

e The PRM-in-XML project was created in 2001 to make it possible to migrate documentation to a more
maintainable format.

e Pyromaniac had documentation for some of the changed APIs in this format.
e |n particular, 0s_aMBControl is fully documented.

e These have been expanded from 3 to 8 documents.

82 /121

Documentation
PRM-in-XML documentation project

e An article was written for Iconbar to explain why PRM-in-XML exists, and what it can do.

e Alan Robertson got involved, and tried out process of creating documents.

e He found many issues, which we addressed some of.

e | created a staging area to collect converted documents.

e Alan converted some functional specification documents from HTML to PRM-in-XML.

83 /121

Documentation
Alan's conversions

Wimp_ForceRedraw (&400D1)
Wimp_ForceRedraw is changed so that it can be applied to windows owned by other tasks, because a child window may belong to another task.

In the past, redrawing the title bar of a window has been accomplished either by working out where the window's title bar is on the screen and calling
Wimp_ForceRedraw with R0=-1 to invalidate that area, or altematively by toggling the input focus in and out of the window to force its borders to be
redrawn.

Neither of these methods is particularly satisfactory: the first could cause other windows on top of the one in question to be redrawn unnecessarily,
and the second redraws the rest of the borders as well, and in the case of child windows, would also cause a redraw of the parent’s title bar.

S0 Wimp_ForceRedraw is extended as follows:
On entry
RO Window handle (as before)
R1 "TASK" (&4B534154)
This signals that the extended version of Wimp_ForceRedraw is being used, and R2-R4 are as stated below,
R2 +3
Redraw title bar.
Other values are reserved.

R3,R4 Ignored.
On exit
Unchanged
Interrupis
Unchanged
Re-entrancy
Unchanged
Notes
Since the value &4B534154 ("TASK") is far too big to be an minimum x coordinate, it is safe to use as described above,

84 /121

Wimp_ForceRedraw
(SWI &400D1)

On entry

RO = Window handle (as belona)
R = "TASK' (Bd BE34154)

This signals that the extended version of Wimp_Force Redraw is being used, and RZ-R4 are as stated below.
R2 Value Meaning
+3 Redraw title bar
Crher values are reserved
R3 - R4 = Ignored

On exit

unchanged

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Hrocessor 1S in sve mode

Re-entrancy

Wl is not re-entrant

Use
Wimp_ForceRedraw is changed 2o that it can be applied 1o windows owned by other tasks, becausze a child window may belong 1o another 1ask.

In the past, redrawing the title bar of a window has been accomplished either by working out where the window's title bar is on the screen and calling
Wimp_ForceRedraw with R0=-1 to invalidate that area, or alternatively by toggling the input focus in and out of the window to force its borders to be
redrawm.

Meither of these methods iz particularly satsfactory: the first could cause other windows on top of the one in question o be redrawn unnecessarily,
and the gecond redraws the rest of the borders as well, and in the case of child windows, would alzso cause a redraw of the parent’s title bar.

50 Wimp_ForceRedraw is extended as shown above.

Mote: Since the value 84B534154 CTASET) is far too big 1o be an minimum x coordinate, it is safe 1o use as described above.

Related APIs

None

Documentation
Updating the PRMs

e Tools now work on RISC OS and linux.
e They're more flexible about what they can do and how they report errors.

e The PRMs themselves have been updated to include more documents which had not been present
previously.

 The results are looking good so far.

85 /121

Documentation
Collaboration (1)

e Wanted a way to represent key and mouse input.
e Original method: sshift; and &ctrl; and the like are pretty inflexible.

e Try some elements to describe modifiers...

<key ctrl='yes' shift='yes' alt='yes' meta='yes'>X</key>

e Some other ideas...

<mouse shift='yes' button='select'/>
<input key='ctrl'/><input key='x'/>

<input shift='yes' mouse='select'/>

86 /121

Documentation
Collaboration (2)

Eventual layout and example output:

<input><key name='W'></input>

<input><key name='ctrl'/><key name='X'/></input>
<input><mouse name='select' repeat='2'/></input>
<input><mouse name='select' action='drag'/></input>
<input><key name='shift'/><mouse name='select'/></input>

87 /121

« W] -the Wkey
CTRL‘)(‘ - control and X (eg a cut)

® 2xSELECT | - double click select (eg run a file)

¢S SELECT | - drag select (eg making a selection)

Press SELECT‘ - press select (eg starting a selection)
SHIFT| @ SELECT

ESC | - press escape twice (eg some special operation to get out of a system?)

SHIFT| CTRL | B8 - shift + control + F12 (eg shutdown)

- shift + select click (eg adding to a selection)

Documentation
Making it look good

e The most recent version for the transformation is what you have seen here.

e This transformation supports HTML5 and CSS, with new elements planned to make it easier to structure
certain elements.

e New styles can be applied to the CSS to change how it looks for a given purpose.
e A number of 'variants' of the styles are supplied and can generally be overlaid.

* This allows people to change what they don't like in the styling, and obviously the structured content
itself is easier to manipulate.

e Acorn applied different styles over the years, with each manual looking subtly (or strikingly) different to
the one that went before.

88 /121

89 /121

SWi Calls

SWI Calls

1-66

OS_Claim
(swi1 &1F)

Adds a routine to the list of those that claim a vector

On entry

RO = vector number [see page |1-T8)
R1 = address of claiming routine that is to be added to vector
R2 = value to be passed in R12 when the routine is called

On exit
RO - R2 preserved

Interrupts

Interrupts are disabled
Fast interrupts are enabled

Processor mode
Processor Is in SVC mode

Re-entrancy
SWI cannot be re-entered as it disables IRQ

Use

This call adds the routine whose address is given in Rl to the list of routines
claiming the vector. This becomes the first routine to be used when the vector is
called.

Any identical earlier instances of the routine are removed. Routines are defined to
be identical if the values passed in R0, R| and R2 are identical.

The R2 value enables the routine to have a workspace pointer set up in R12 when it
is called. If the routine using the vector is In a module (as will often be the case),
this pointer will usually be the same as its module workspace pointer.

Software vectors

SWI Calls

OS_Claim
(SWI1 &1F)

Adds a routine to the list of those that claim a vector

On entry

RO =vector number [see List of software vectors (on page 42))
El =address of claiming routine that is to be added to vector
RE2=value to be passed in R12 when the routine is called

On exit
RO - R2 preserved

Interrupts

Interrupts are disabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWl is mot re-entrant

51

SWI Calls

On entry

On exit
Interrupts

Processor mode
Re-entrancy

Use

Related SWis

Related veclors

58

90 / 121

OS_Claim
(swi1 &1F)

Adds a routine o the list of those thar claim a vecror

RO = vector number
R1 = address of claiming routine
R2 = value to be passed in R12 when the routine is called

RO - R2 preserved

Interrupts are disabled
Fast interrupts are enabled

Processor is in SVC mode
SW1 cannot be re-entered as it disables IRQ

This call adds the routine whose address is given in R1 to the list of routines
claiming the vector. This becomes the first routine to be used when the vector
is called.

Any carlier instances of the same routine are removed. Routines are defined
to be the same if the values passed in RO, R1 and R2 are identical.

The R2 value enables the routine 1o have a workspace poinrer ser up in R12
when it is called. If the routine using the vector is in a module (as will often
be the case), this pointer will usually be the same as irs module workspace
pointer.

See below for a list of the vector numbers.
Example:

MOV RO, IEyLeV
ADR Rl. MyBytaHandlar

Mov R, 010
EWI "0f Clalim®

OS_Release (SW] &20), OS_CallAVecror (SW1 &34),
0S_AddToVecror (SW1 &47)

All

Crafhwara vastare . CIAN Malls

SV Calls

On entry

on exit

Interrupts

Processor mode
Re-entrancy

U=g

46

OS_Claim
(SWI &1F)

Adds a routine to the list of those that claim a vector

RO = vector number (see List of software vectors (on page 39))
Rl = address of claiming routine that is to be added to vector
R2 = value 1o be passed in R12 when the routine is called

RO - RZ preserved

Interrupts are disabled
Fast interrupts are enabled

Processor is in 3VC mode
SW1is not re-entrant
This call adds the routine whose address is given in R1 to the list of routines

claiming the vector. This becomes the first routine to be used when the vector is
called.

Any identical earlier instances of the routine are removed. Routines are defined
to be identical if the values passed in R0, Rl and R2 are identical.

The R2 value enables the routine to have a workspace peinter set up in R12 when
it is called. If the routine using the vector is in a module (as will often be the case),

this pointer will usually be the same as its module workspace pointer.

Mote that this SWI cannot be re-entered as it disables IRQs.

Software vectors: S\W1 Calls

Documentation demo

91 /121

5. Testing

Testing

How do you test these features

e Testing in most of RISC OS Pyromaniac is through expectation tests.

e That means we write some output, and we compare it to what we expect.

e Differences mean the tests fail.
e But that's not quite as easy for graphics.

e Unless you make the graphics pixels into text too.

e pBM files (plus peM, PPM strictly) can be text forms of the graphics.

 When rendered into a small mode, the comparison becomes more manageable.

93 /121

Testing

Testing sprites with text

]

55 33

[=T]
wn
wn

O OO0 0000000000000 0000000000000 o0o0oOo00

O OO0 0000000000000 000 0000000000000 o0o00
O OO0 0000000000000 000 0000000000000 o0o00
[= TR N Y N N N N N e T e T TR TR o TR T TR o TR [= T [o Y (O N Y Y Y T o T o T = T = T = T =
O OO0 0000000000000 000 0000000000000 o0o00
O OO0 0000000000000 000 0000000000000 o0o00
O OO0 0000000000000 000 0000000000000 o0o00
O OO0 0000000000000 000 0000000000000 o0o00
O OO0 0000000000000 000 0000000000000 o0o00
O OO0 0000000000000 000 0000000000000 o0o00
O OO0 0000000000000 000 0000000000000 o0o00
O OO0 0000000000000 000 0000000000000 o0o00
D e e R RO N DD DD W W W W e EE MMM BRMNDODOOD W N W WD DO

D e e R RO N DD DD W W W W e EE MMM BRMNDODOOD W N W WD DO

D e R OB OR R DD DD W WKW W E R R R BN BRMDOODDONW N WDD

D e e R RO N DD DD W W W W e EE MMM BRMNDODOOD W N W WD DO

DO NN M RN OO OO W W W W E 5 H 5§ B B B B O O 090 0O W W W W = D = = O O
DO NN M RN OO OO W W W W E 5 H 5§ B B B B O O 090 0O W W W W = D = = O O
DO NN M RN OO OO W W W W E 5 H 5§ B B B B O O 090 0O W W W W = D = = O O
DO NN M RN OO OO W W W W E 5 H 5§ B B B B O O 090 0O W W W W = D = = O O

O 0 0 0 0 W W W W = L D = B B B O O O 0O 0 W W oW W = = = = O O O M O O
O 0 0 0 0 W W W W = L D = B B B O O O 0O 0 W W oW W = = = = O O O M O O
O 0 0 0 0 W W W W = L D = B B B O O O 0O 0 W W oW W = = = = O O O M O O
O 0 0 0 0 W W W W = L D = B B B O O O 0O 0 W W oW W = = = = O O O M O O
D W o o W e R R RN M OODOOWW W W EEEBBNBRBNBRNND OSSO
D W oW W L e e e e R RN M OO DD W W W W EEEE NN NN DD OO DD
D W oW W L e e e e R RN M OO DD W W W W EEEE NN NN DD OO DD
D W oW W L e e e e R RN M OO DD W W W W EEEE NN NN DD OO DD
D e e R RO N DD DD W W W W e EE MMM BRMNDODOOD W N W WD DO

D e e R RO N DD DD W W W W e EE MMM BRMNDODOOD W N W WD DO

D e e R RO N DD DD W W W W e EE MMM BRMNDODOOD W N W WD DO

D e e R RO N DD DD W W W W e EE MMM BRMNDODOOD W N W WD DO

DO NN M RN OO OO W W W W E 5 H 5§ B B B B O O 090 0O W W W W = D = = O O
DO NN M RN OO OO W W W W E 5 H 5§ B B B B O O 090 0O W W W W = D = = O O
DMK KN MDOODODO D W W W W H B H B BB BB D DO DWW W W E BB $B&§ OO
DMK KN MDOODODO D W W W W H B H B BB BB D DO DWW W W E BB $B&§ OO
O 0 0 0 0 W W W W = L D = B B B O O O 0O 0 W W oW W = = = = O O O M O O
O 0 0 0 0 W W W W = L D = B B B O O O 0O 0 W W oW W = = = = O O O M O O
O 0 0 0 0 W W W W = L D = B B B O O O 0O 0 W W oW W = = = = O O O M O O
O 0 0 0 0 W W W W = L D = B B B O O O 0O 0 W W oW W = = = = O O O M O O
D W oW W L e e e e R RN M OO DD W W W W EEEE NN NN DD OO DD
D W oW W L e e e e R RN M OO DD W W W W EEEE NN NN DD OO DD
D W oW W L e e e e R RN M OO DD W W W W EEEE NN NN DD OO DD
D W oW W L e e e e R RN M OO DD W W W W EEEE NN NN DD OO DD
[= TR N Y N N N N N e T e T TR TR o TR T TR o TR [= T [o Y (O N Y Y Y T o T o T = T = T = T =
[= TR N Y N N N N N e T e T TR TR o TR T TR o TR [= T [o Y (O N Y Y Y T o T o T = T = T = T =
[= TR N Y N N N N N e T e T TR TR o TR T TR o TR [= T [o Y (O N Y Y Y T o T o T = T = T = T =
O OO0 0000000000000 000 0000000000000 o0o00
O OO0 0000000000000 000 0000000000000 o0o00
O OO0 0000000000000 000 0000000000000 o0o00
O OO0 0000000000000 000 0000000000000 o0o00
O OO0 0000000000000 000 0000000000000 o0o00
O OO0 0000000000000 000 0000000000000 o0o00
O OO0 0000000000000 000 0000000000000 o0o00
O OO0 0000000000000 000 0000000000000 o0o00

94 /121

Testing

ColourTrans testing

e ColourTrans testing can be hard when there are so many combinations.
e |t just deals with numbers, so we need to check they're the right numbers.

e Some interfaces like ColourTrans_ ReturnGCOL can have some sampled tests.

Test ReturnGCOL conversion

Colour &0000£f££f00 => 1 Opposite =>
Colour &00££0000 =>
Colour &£f£f000000 =>
Colour &ffffff00 =>
Colour &80808000 =>
Colour &81397900 =>

Opposite =>
Opposite =>
Opposite =>
Opposite =>

= ~d ~d N
w o O W U o

Opposite =>

95 /121

Testing

Testing user interfaces and platforms

e There are 3 user interfaces that you can use in the desktop:

e WxWidgets
e GTK
e VNC

e None of them have any explicit tests.

e There are 2 applications that are produced:

e Windows application

* macOS application

e Neither have any explicit tests.

e Both work for me, and I've had some success with friends testing them. Eventually.

96 /121

Testing

How much testing is there?

e There are now 1592 tests (up from 1022 last year).
e Code coverage is 67.19% (up from 65.8% last year).
e There are 82450 lines of python (up from 57997).

e There's a bunch more statistics up on the pyromaniac.riscos.online site.

97 /121

Testing

Trace features (1)

e Better disassembly of some instructions.

e Can disassemble FPA instructions.

e More information about register and constant values in live debug:

3852384: LDR rl, [rl0, #&dc]
3852388: TST rl, #&1000000

R10 = &05405738
R1 = &00000852, #16777216 = bit 24

e Decoding of dispatch tables and region names:

3841f78: CMP rll, #&3e
3841f7c: ADDLO lr, rll, #&2f
3841£f80: MOVLO rll, rl

3841f84: ADDLO pc, pc, lr, LSL #2

3842110: B &0384331C

r
r
r
r

.
r

; R11 = &00000032, #62

1}1

; R11 = &00000032
; R1 = &00000000
: Table dispatch index #97

-> Function: SWIWimp ReadSysInfo

384331c: {DA 'ROM', module 'WindowManager': Function SWIWimp ReadSysInfo}

98 /121

Testing

Trace features (2)

e Improved MSR constant decoding:

3841le3c: MSRVS apsr_nzcvqg, #&20000000 ¢ Pommmmm cem —m —a

® 0S_Writes now reports the string that follows the instruction.
e A few more SWI interfaces report 'misuse' warnings.

e | egacyBBC can now report when its old interfaces are triggered.

99 /121

Testing

Trace features (3)

e | ocations in the trace now report region

names.

Locations:
r5 -> [&07065abc, &00000000,

r6 -> [&00000000, &0680141d,
'"ColourPicker%Base’' workspace

r8 -> [&06801378, &068013c4,
'"ColourPicker%Base’' workspace

rl0 -> [&00000000, &00000000,
rll -> [&070528e4, &00000001,
pc is DA 'Module area', module
lr is DA 'Module area', module

&00000000, &00000010] in

'"ColourPicker%Base' private word pointer

&06801426, &00000010] in

&00000000, &00000000] in

r9 -> Function: resource templates free in DA 'Module

&00000000, &00000000] in
&07065aac, &00000000] in

DA 'Module area', module
DA 'Module area', module
DA 'Module area', module
area', module 'ColourPicker'

DA 'SVC Stack'
DA 'SVC Stack'

'ColourPicker’': Function model register+&al

'ColourPicker’': Function rgb initialise+&104

100 /121

Testing

Trace features (4)

e SWI traps allow a trace dump to be generated when a SWI is called.

e They now allow automatic transitions of the trace system:

e report: Just reports the state as the SWI is entered and exited.
e trace: Turns on code tracing whilst the SWI is executing.
* traceon: Turns on code tracing when the SWI is entered.

e traceoff: Turns off code tracing when the SWI is entered.

e This aids debugging if you know a SWI is called near where you're interested in.

101 /121

Testing
Ul Debug

e Command line debug options can be used to set the debug from the start.

102 /121

nside RISC OS you can use *PyromaniacDebug <options> to change that.
But sometimes it's easier to select things from the user interface... so...

Ul has a debug menu - which I'll show in a moment - so that you can change the debug information

Ive.

6. Miscellaneous bits

103 /121

Miscellaneous bits
Sound system (1)

* Original testing was using BBC program from BBC Micro Music Masterclass.

e This was a simple rendition of Hall Of The Mountain King.

10
20
30
40
50
60
70
80
90
100

REM

REM *** HALL ***
REM

REPEAT

READ P

IF P=0 THEN END

SOUND 1,-10,P,5

UNTIL FALSE

DATA 61,69,73,81,89,73,89,89,85,69,85,85,81,65,81,81,61,69,

73,81,89,73,89,109,101,89,73,89,101,101,101,101,0

104 /121

Miscellaneous bits
Sound system (2)

Converting RISC OS pitches to BBC pitches:

if pitch >= 0x100 and pitch <= 0x7FFF:
In BBC sound, 53 is middle C, with 4 steps per semitone;

48 steps per octave
In RISC OS sound, &4000 is middle C, with &1000/12 steps per semitone;
&1000 steps per octave

riscos pitch = pitch

pitch = riscos pitch / 4096.0 * 48
pitch = int(pitch - 139 + 0.5)

1f self.debug soundchannels:

print("Converted RISC OS pitch &{:x} to BBC pitch {}".format(riscos pitch,
pitch))

105 /121

Miscellaneous bits
Sound system (3)

e For completeness | wanted to get the SoundScheduler working.
e This lets you play notes at later times using a beat schedule.

e Or you can call any SWI.

e Speeds were all wrong... but that fixed itself by not debugging it so much.
e SoundDMA is still on a branch and hasn't been updated this year.

e The sound system is complicated, but the implementation here works well enough.

106 /121

Miscellaneous bits

Flashing cursor (1)

e Text cursor had only been implemented as a stub that didn't actually flash.

e Wanted to test that 0S_RemoveCursors and 0S_RestoreCursors were used properly.

All the code that needed to handle cursors has a context handler around them. The Font_Paint code looks like
this:

with self.ro.kernel.graphics.vducursor.disable():
self.context.paint (fc.sequence, spacing)

107 /121

Miscellaneous bits

Flashing cursor (2)

The actual body of the cursor code looks like this:

(x0,
y0 =
yl =

fg =

fg =
for

No
self

y0, x1, yl) = self.ro.kernel.graphics.vdu4 coords(tx, ty)
yl - self.ro.kernel.vdu.cursor endline
yl - self.ro.kernel.vdu.cursor startline

self.ro.kernel.vdu.fqg

255 if self.ro.kernel.vdu.ncolour == 63 else self.ro.kernel.vdu.ncolour
y in range(y0, yl + 1):
hline = self.ro.kernel.graphics.read hline internal(x0, x1, y)
hline = [col © f£g i1f col is not None else col for col in hline]
hline = self.ro.kernel.graphics.write hline internal(x0, x1, y, hline)
tification that the bank was updated, so that the frame is rendered

.ro.kernel.graphics.display bank updated()

108 /121

Miscellaneous bits

Vectoring

e wrchv, which vectors all the VDU output (since BBC days) wasn't implemented.

e Required for some Wimp Commandwindow to work properly.

e But it slows things down to do this for every character.

e Now implemented, but bypassed if there are no claimants.

* prawV is used by the braw module to augment its interface.

e FontV had been intended to be vectored, but was disabled by Acorn.

e Pyromaniac allows it to be enabled through configuration.

109 /121

Miscellaneous bits

Hourglass

* The riscos-hourglass-maker repository has been updated.
e Support (on a branch) added for percentage digits, or a progress bar.

e The 'cog' hourglass within Pyromaniac uses these.

110 /121

Miscellaneous bits
OS_Plot changes

Actions:

e 0S_Plot only supported the simple 'set' operation.
* EOR is used quite often to animate shapes.
e Cairo provides a similar DIFFERENCE operator.
e Not quite right, but sufficient to work most of the time.
Dotted lines:
® 0S_Plot can be used to draw lines using a dot pattern.
e The pattern is configured by vbu 23, 6, the length by 0s_Byte 163.

e Cairo's dot pattern is defined by on-off lengths, so these needed converting.

1117121

Miscellaneous bits

Mouse input

* Mouse clicks worked, but...

e ... mouse double clicks never happened.

e Maybe the time wasn't reported properly?

e The mouse timestamp was wrong.

e ... but that wasn't the problem.

e The mouse buffer wasn't implemented, so maybe that was the reason.

* So | implemented the mouse buffer...

112 /121

Miscellaneous bits

Mouse input

* Mouse clicks worked, but...

e ... mouse double clicks never happened.

e Maybe the time wasn't reported properly?

e The mouse timestamp was wrong.

e ... but that wasn't the problem.

e The mouse buffer wasn't implemented, so maybe that was the reason.
* So | implemented the mouse buffer...

e .. but then noticed that the events were never delivered to RISC OS.

 The WxWidgets interface weren't being delivered, because they were never requested!

113 /121

Miscellaneous bits

New modules

e Zipper module

e TimerMod

e CryptRandom

e CDFSSoftPyromaniac driver
e Squash

114 /121

System demo

115 /121

8. Conclusion

116 /121

Conclusion
What did I get done? (1)

e Graphics system improvements. Sprites, ColourTrans, deep modes, VNC server, hourglass.

e Filesystem improvements. More commands supported, FSControl, GBPB improvements, encoding
improvements.

e Input improvements. Keyboard scans and mouse buffer handling.

e Debug improvements. Better trace reports, more info in disassembly. FPA instructions.
e Sound system improvements. SoundChannels. SoundScheduler.

e New modules. Zipper, TimerMod, Squash, CryptRandom, CDFSSoftPyromaniac.

e Many fixes across the system.

e PRM-in-XML documentation improvements.

117 /121

Conclusion
What did I get done? (2)

e Shell server updated semi-regularly.
e RISC OS build server back end updated at the same time.

e The information site has been updated: https:/pyromaniac.riscos.online/

e | ots of information about what's supported in the bocs- Features documentation.

e The full changelog in bocs- Change Log summarises many other things | couldn't cover here.

118 /121

Conclusion
Is it still fun?

e Generally still fun!
e Collaborative working with Alan on the documentation system has been great.

e Taking the opportunity to talk about testing on RISC OS was a nice break in the middle of the year, and
maybe | should do that more often.

e Sometimes investigating problems goes nowhere, but makes for interesting experiments.

e This presentation has been stressful to prepare - packing a year's things into a couple of hours is tricky.

119 /121

Conclusion

What do | want to do next?

e Fixes for some of the known problems.

e Filesystem registration - allowing more than just the native filesystem to work.

e | have some ideas about sprite redirection.

e Multiple displays.

e Back Trace Structures.

e Port to Python 3.

e Experiment with changes to some of the internal interfaces.

e Use it to develop and test some things!

120 /121

Questions

Info site: https://pyromaniac.riscos.online/
Shell: http://shell.riscos.online/

121 /121

